题目内容
【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心到所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )
A. B. C. D.
【答案】C
【解析】
设外接圆的圆心为,则平面,所以,设外接圆的半径为,,利用正弦定理即可求得:,再利用截面圆的性质可列方程:,即可求得,即可求得点到平面的距离的最大值为,利用余弦定理及基本不等式即可求得:,再利用锥体体积公式计算即可得解。
设外接圆的圆心为,则平面,所以
设外接圆的半径为,,
由正弦定理可得:,解得:
由球的截面圆性质可得:,解得:
所以点到平面的距离的最大值为:.
在中,由余弦定理可得:
当且仅当时,等号成立,所以.
所以,当且仅当时,等号成立.
当三棱锥的底面面积最大,高最大时,其体积最大.
所以三棱锥的体积的最大值为
故选:C
练习册系列答案
相关题目