题目内容

【题目】若函数f(x)=(a2﹣3a+3)ax是指数函数,试确定函数y=loga(x+1)在区间(0,3)上的值域.

【答案】解:函数f(x)=(a2﹣3a+3)ax是指数函数,
则: ,解得:a=2
∴函数y=log2x是增函数
∴函数y=loga(x+1)即y=log2(x+1)也是增函数.
∴在区间(0,3)上,即0<x<3,
有:log2(0+1)<log2(x+1)<log2(3+1),
解得:0<y<2,
即所求函数的值域为(0,2)
【解析】根据指数函数定义可得a2﹣3a+3=1,求解a的值,利用指数函数的单调性求解在区间(0,3)上的值域.
【考点精析】本题主要考查了指数函数的单调性与特殊点的相关知识点,需要掌握0<a<1时:在定义域上是单调减函数;a>1时:在定义域上是单调增函数才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网