题目内容
【题目】已知函数f(x)= + .
(1)求f(x)的定义域A;
(2)若函数g(x)=x2+ax+b的零点为﹣1.5,当x∈A时,求函数g(x)的值域.
【答案】
(1)解:要使函数有意义,必须: ,解得1≤x≤3,函数的定义域为:[1,3].
(2)解:函数g(x)=x2+ax+b的零点为﹣1,5,可得a=﹣(﹣1+5)=﹣4,b=﹣1×5=﹣5,
g(x)=x2﹣4x﹣5=(x﹣2)2﹣9,当x∈A时,即x∈[1,3]时,x=2函数取得最小值:y=﹣9,x=1或3时,函数取得最大值:﹣8.
函数g(x)的值域[﹣9,﹣8].
【解析】(1)利用函数有意义,列出不等式组求解即可.(2)利用函数的零点求出a,通过函数的对称轴,求解函数的值域即可.
【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
练习册系列答案
相关题目