题目内容
【题目】如图,在四棱锥是平行四边形,
(1)证明:平面平面PCD;
(2)求直线PA与平面PCB所成角的正弦值.
【答案】(1)详见解析(2)
【解析】
(1)证明AC平面PCD,结合平面与平面垂直判定,即可。(2)建立空间直角坐标系,分别得出O,P,A,B,C坐标,计算平面PCB的法向量,计算向量坐标,结合空间向量数量积,计算,即可。
解(1)证明:因为
所以
所以
所以
因为,
所以
因为所以
(2)由(1)知
所以交线为CD,过P在平面PCD内做CD的垂线,垂足为O,
取BC中点为M,连PM,AM,
因为,,
所以,又平面PAM
所以,
因为 ,所以,因为直线AP平面PAM,
所以直线直线AP,
又,所以.
在中,由余弦定理得,
即
所以,
由此,,所以四边形ABOC为平行四边形,所以,所以
以直线OP为z轴,直线OD为x轴,直线OB为y轴建立空间直角坐标系.
所以
设是平面PBC的一个法向量,因为
所以,取,又,
所以,,
所以直线PA与平面PCB所成角的正弦值.
练习册系列答案
相关题目