题目内容
【题目】已知椭圆:的左、右焦点分别为,是椭圆上的点,且的面积为。
(1)求椭圆的方程;
(2)若斜率为且在轴上的截距为的直线与椭圆相交于两点,若椭圆上存在点,满足,其中是坐标原点,求的值。
【答案】(1); (2).
【解析】
(1)利用已知条件列出椭圆几何量的方程组,求解a,b,即可求椭圆C的方程;
(2)联立直线与椭圆方程,利用韦达定理,结合向量关系,推出结果即可.
(1)∵△PF1F2的面积为,∴×2c×=,即c=1,
由,解得a2=2,b2=1,∴椭圆C的方程为+y2=1;
(2)由题意可得l:y=k(x﹣2),设点A(x1,y1),B(x2,y2),Q(x,y),
由,消y可得(1+2k2)x2﹣8kx+8k2﹣2=0,
∴△=64k2﹣4(1+2k2)(8k2﹣2)>0,可得k2<,
∴x1+x2=,x1x2=,
∵,∴=3﹣3(﹣),即=(+),
∴(x,y)=(x1+x2,y1+y2),∴x=(x1+x2)=
y=[k(x1+x2)﹣4k]=,∴Q(,),∵点Q在椭圆C上,
∴+2=2,∴9k2=1+2k2,解得k=±.
练习册系列答案
相关题目
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?
参考公式:,.