ÌâÄ¿ÄÚÈÝ
18£®¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹f£¨x0£©=x0³ÉÁ¢£¬Ôò³Æx0Ϊf£¨x£©µÄÒ»¸ö²»¶¯µã£®É躯Êýf£¨x£©=ax2+bx+1£¨a£¾0£©£®£¨¢ñ£©µ±a=2£¬b=-2ʱ£¬Çóf£¨x£©µÄ²»¶¯µã£»
£¨¢ò£©Èôf£¨x£©ÓÐÁ½¸öÏàÒìµÄ²»¶¯µãx1£¬x2£¬
£¨¢¡£©µ±x1£¼1£¼x2ʱ£¬Éèf£¨x£©µÄ¶Ô³ÆÖáΪֱÏßx=m£¬ÇóÖ¤£ºm£¾$\frac{1}{2}$£»
£¨¢¢£©Èô|x1|£¼2ÇÒ|x1-x2|=2£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨¢ñ£©µ±a=2£¬b=-2ʱ£¬f£¨x£©=2x2-2x+1£¬¹¹Ôì·½³Ìf£¨x£©=x£¬½âµÃ´ð°¸£»
£¨¢ò£©Èôf£¨x£©ÓÐÁ½¸öÏàÒìµÄ²»¶¯µãx1£¬x2£¬Ôòx1£¬x2ÊÇ·½³Ìf £¨x£©=xµÄÁ½ÏàÒì¸ù£¬
£¨¢¡£©µ±x1£¼1£¼x2ʱ£¬m=-$\frac{b}{2a}$£¬½áºÏΤ´ï¶¨Àí£¬¿ÉµÃm£¾$\frac{1}{2}$£»
£¨¢¢£©Èô|x1|£¼2ÇÒ|x1-x2|=2£¬ÓÉΤ´ï¶¨Àí¹¹Ôì¹ØÓÚbµÄ²»µÈʽ£¬½âµÃʵÊýbµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒ⣺f£¨x£©=2x2-2x+1=x£¬¼´2x2-3x+1=0£¬
½âµÃ$x=\frac{1}{2}$»ò1£¬¼´f£¨x£©µÄ²»¶¯µãΪ$\frac{1}{2}$ºÍ1£» ¡£¨5·Ö£©
£¨¢ò£©£¨¢¡£© ÓÉf £¨x£©±í´ïʽµÃm=-$\frac{b}{2a}$£¬
¡ßg£¨x£©=f £¨x£©-x=a x2+£¨b-1£©x+1£¬a£¾0£¬
ÓÉx1£¬x2ÊÇ·½³Ìf £¨x£©=xµÄÁ½ÏàÒì¸ù£¬ÇÒx1£¼1£¼x2£¬
¡àg£¨1£©£¼0⇒a+b£¼0⇒-$\frac{b}{a}$£¾1⇒-$\frac{b}{2a}$£¾$\frac{1}{2}$£¬¼´ m£¾$\frac{1}{2}$£® ¡£¨9·Ö£©
£¨¢¢£©¡÷=£¨b-1£©2-4a£¾0⇒£¨b-1£©2£¾4a£¬
x1+x2=$\frac{1-b}{a}$£¬x1x2=$\frac{1}{a}$£¬
¡à|x1-x2|2=£¨x1+x2£©2-4x1x2=£¨$\frac{1-b}{a}$£©2-$\frac{4}{a}$=22£¬¡£¨11·Ö£©
¡à£¨b-1£©2=4a+4a2£¨*£©
ÓÖ|x1-x2|=2£¬
¡àx1¡¢x2 µ½ g£¨x£© ¶Ô³ÆÖá x=$\frac{1-b}{2a}$µÄ¾àÀ붼Ϊ1£¬
Ҫʹg£¨x£©=0 ÓÐÒ»¸ùÊôÓÚ £¨-2£¬2£©£¬
Ôò g£¨x£© ¶Ô³ÆÖá x=$\frac{1-b}{2a}$¡Ê£¨-3£¬3£©£¬¡£¨13·Ö£©
¡à-3£¼$\frac{b-1}{2a}$£¼3⇒a£¾$\frac{1}{6}$|b-1|£¬
°Ñ´úÈë £¨*£© µÃ£º£¨b-1£©2£¾$\frac{2}{3}$|b-1|+$\frac{1}{9}$£¨b-1£©2£¬
½âµÃ£ºb£¼$\frac{1}{4}$»ò b£¾$\frac{7}{4}$£¬
¡àb µÄÈ¡Öµ·¶Î§ÊÇ£º£¨-¡Þ£¬$\frac{1}{4}$£©¡È£¨ $\frac{7}{4}$£¬+¡Þ£©£®¡£¨15·Ö£©
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǶþ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬Î¤´ï¶¨Àí£¬ÊǶþ´Î·½³ÌÓë¶þ´Îº¯Êý£¬¶þ´Î²»µÈʽµÄ×ÛºÏÓ¦Óã¬ÄѶȽϴó£®
A£® | {-1£¬0£¬1} | B£® | {2£¬3} | C£® | {-2£¬2£¬3} | D£® | {-1£¬0£¬1£¬2£¬3} |
µÚ1ÁÐ | µÚ2ÁÐ | µÚ3ÁÐ | µÚ4ÁÐ | µÚ5ÁÐ | |
µÚÒ»ÐÐ | 1 | 3 | 5 | 7 | |
µÚ¶þÐÐ | 15 | 13 | 11 | 9 | |
µÚÈýÐÐ | 17 | 19 | 21 | 23 | |
µÚËÄÐÐ | ¡ | ¡ | 27 | 25 |
£¨¢ò£©ÒÑÖªµãA1£¨a1£¬b1£©£¬A2£¨a2£¬b2£©£¬¡£¬An£¨an£¬bn£©ÔÚÖ¸Êýº¯Êýy=2xµÄͼÏóÉÏ£¬Èç¹û£¬ÒÔA1£¬A2£¬¡£¬AnΪһ¸ö¶¥µã£¬xÖáyÖáΪÁڱ߹¹³ÉµÄ¾ØÐÎÃæ»ýΪS1£¬S2£¬¡Sn£¬ÇóS1+S2+¡+SnµÄÖµTn£®
A£® | 2 | B£® | 2.5 | C£® | 2$\sqrt{3}$-1 | D£® | 2$\sqrt{2}$+1 |
A£® | $12\sqrt{3}+4\sqrt{3}¦Ð$ | B£® | $\frac{{4\sqrt{39}}}{3}+\frac{{4\sqrt{3}¦Ð}}{3}$ | C£® | $12\sqrt{3}+\frac{{4\sqrt{3}¦Ð}}{3}$ | D£® | $4\sqrt{3}+\frac{{4\sqrt{3}¦Ð}}{3}$ |
A£® | $\frac{7\sqrt{2}}{6}$ | B£® | $\frac{7}{3}$ | C£® | 2$\sqrt{2}$ | D£® | 2 |