题目内容
已知函数.
(1)若,求的值;
(2)求函数的单调递增区间.
(1);(2)的单调递增区间是.
解析试题分析:本题考查两角和与差的正弦公式、降幂公式以及运用三角公式进行三角变换求三角函数的单调区间.第一问,用降幂公式化简式子,得到解出,再代入到中用诱导公式化简;第二问,先利用降幂公式、两角和与差的正弦公式化简表达式,再数形结合求单调区间.
试题解析:(1)由题设知.
因为,所以,
,即 ().
所以. (6分)
(2)
当,即 ()时,
函数是增函数,
故函数的单调递增区间是 ().(12分)
考点:1.降幂公式;2.诱导公式;3.两角和与差的正弦公式;4.三角函数的单调性.
练习册系列答案
相关题目