ÌâÄ¿ÄÚÈÝ

10£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ²¢È¡ÏàͬµÄµ¥Î»³¤¶È£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=\frac{\sqrt{2}}{2}$£®
£¨¢ñ£©°ÑÇúÏßC1µÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£¬C2µÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1£¬C2ÏཻÓÚA£¬BÁ½µã£¬ABµÄÖеãΪP£¬¹ýµãP×öÇúÏßC2µÄ´¹Ïß½»ÇúÏßC1ÓÚE£¬FÁ½µã£¬Çó|PE|•|PF|£®

·ÖÎö £¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý¼´¿ÉµÃ³ö£®ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=\frac{\sqrt{2}}{2}$£®Õ¹¿ªÎª$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È-¦Ñsin¦È£©=$\frac{\sqrt{2}}{2}$£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{x=¦Ñcos¦È}\end{array}\right.$¼´¿ÉµÃ³ö£®
£¨II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÒÖеãΪP£¨x0£¬y0£©£¬ÁªÁ¢Å×ÎïÏßÓëÖ±Ïߵķ½³Ì¿ÉµÃx2-6x+1=0£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¡¢Öеã×ø±ê¹«Ê½¿ÉµÃx0=$\frac{{x}_{1}+{x}_{2}}{2}$=3£¬y0=2£®½ø¶øµãµ½Ï߶ÎABµÄÖд¹ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëÅ×ÎïÏß·½³Ì£¬ÀûÓòÎÊýµÄÒâÒå¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý¿ÉµÃy2=4x£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=\frac{\sqrt{2}}{2}$£®Õ¹¿ªÎª$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È-¦Ñsin¦È£©=$\frac{\sqrt{2}}{2}$£¬»¯Îªx-y-1=0£®
£¨II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÒÖеãΪP£¨x0£¬y0£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x-y-1=0}\end{array}\right.$£¬½âµÃx2-6x+1=0£¬
¡àx1+x2=6£¬x1x2=1£®
¡àx0=$\frac{{x}_{1}+{x}_{2}}{2}$=3£¬y0=2£®
Ï߶ÎABµÄÖд¹ÏߵIJÎÊý·½³ÌΪΪ$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëy2=4x£¬¿ÉµÃt2+8$\sqrt{2}$t-16=0£¬
¡àt1t2=-16£¬
¡à|PE|•|PF|=|t1t2|=16£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢²ÎÊýµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø