题目内容
【题目】圆心在曲线上,与直线x+y+1=0相切,且面积最小的圆的方程为( )
A. x2+(y-1)2=2B. x2+(y+1)2=2C. (x-1)2+y2=2D. (x+1)2+y2=2
【答案】A
【解析】
设与直线x+y+1=0平行与曲线相切的直线方程为x+y+m=0,切点为P(x0,y0),x0>﹣1,解得x0,可得切点P即圆心,利用点到直线的距离公式可得半径r,求解即可.
设与直线x+y+1=0平行与曲线相切的直线方程为x+y+m=0,
切点为P(x0,y0).x0>0.
y′=﹣,∴﹣=﹣1,x0>﹣1,解得x0=0.可得切点P(0,1),
两条平行线之间的距离为面积最小的圆的半径;∴半径r== .
∴圆心在曲线上,且与直线x+y+1=0相切的面积最小的圆的方程为:x2+(y﹣1)2=2.
故选:A.
【题目】已知某保险公司的某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | |
保费(元) |
随机调查了该险种的400名续保人在一年内的出险情况,得到下表:
出险次数 | 0 | 1 | 2 | 3 | |
频数 | 280 | 80 | 24 | 12 | 4 |
该保险公司这种保险的赔付规定如下:
出险序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
赔付金额(元) | 0 |
将所抽样本的频率视为概率.
(Ⅰ)求本年度续保人保费的平均值的估计值;
(Ⅱ)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付元;若续保人在本年度内出险6次,则可获得赔付元;依此类推,求本年度续保人所获赔付金额的平均值的估计值;
(Ⅲ)续保人原定约了保险公司的销售人员在上午10:30~11:30之间上门签合同,因为续保人临时有事,外出的时间在上午10:45~11:05之间,请问续保人在离开前见到销售人员的概率是多少?