题目内容
【题目】某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有个电子元件,将每组的个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为,求的数学期望;
(3)估算当为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用进行估算).
【答案】(1)0.05 (2) (3) 600次
【解析】
(1)事件:一组待检测电子元件中由次品,由计算;
(2)的可能取值为,表示k个元件一次检测全通过.由此可得概率分布列,从而可得期望.
(3)由(2)得平均次数为,由基本不等式求得最小值.
解:(1)设事件:一组待检测电子元件中由次品,则事件表示一组待检测电子元件中没有次品;
因为
所以
(2)依题意,的可能取值为
分布列如下:
1 | ||
所以的数学期望为:
(3)由(2)可得:每个元件的平均检验次数为:
因为
当且仅当时,检验次数最小
此时总检验次数(次)
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
交付金额(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.