题目内容
【题目】设函数,,其中,为正实数.
(1)若的图象总在函数的图象的下方,求实数的取值范围;
(2)设,证明:对任意,都有.
【答案】(1) (2)证明见解析
【解析】
(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.
(1)解:因为函数的图象恒在的图象的下方,
所以在区间上恒成立.
设,其中,
所以,其中,.
①当,即时,,
所以函数在上单调递增,,
故成立,满足题意.
②当,即时,设,
则图象的对称轴,,,
所以在上存在唯一实根,设为,则,,,
所以在上单调递减,此时,不合题意.
综上可得,实数的取值范围是.
(2)证明:由题意得,
因为当时,,,
所以.
令,则,
所以在上单调递增,,即,
所以,从而.
由(1)知当时,在上恒成立,整理得.
令,则要证,只需证.
因为,所以在上单调递增,
所以,即在上恒成立.
综上可得,对任意,都有成立.
练习册系列答案
相关题目