题目内容
设函数f(x)=ln x-p(x-1),p∈R.
(1)当p=1时,求函数f(x)的单调区间;
(2)设函数g(x)=xf(x)+p(2x2-x-1)(x≥1),求证:当p≤-时,有g(x)≤0.
(1)当p=1时,求函数f(x)的单调区间;
(2)设函数g(x)=xf(x)+p(2x2-x-1)(x≥1),求证:当p≤-时,有g(x)≤0.
(1)f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
(2)见解析
(2)见解析
(1)解:当p=1时,f(x)=ln x-x+1,
其定义域为(0,+∞),
∴f′(x)=-1,
由f′(x)=-1>0,得0<x<1,
由f′(x)<0,得x>1,
∴f(x)的单调递增区间为(0,1),
单调递减区间为(1,+∞).
(2)证明:由函数g(x)=xf(x)+p(2x2-x-1)
=xln x+p(x2-1),
得g′(x)=ln x+1+2px.
由(1)知,当p=1时,f(x)≤f(1)=0,
即不等式ln x≤x-1成立,
所以当p≤-时,g′(x)=ln x+1+2px≤(x-1)+1+2px=(1+2p)x≤0,
即g(x)在[1,+∞)上单调递减,
从而g(x)≤g(1)=0满足题意.
其定义域为(0,+∞),
∴f′(x)=-1,
由f′(x)=-1>0,得0<x<1,
由f′(x)<0,得x>1,
∴f(x)的单调递增区间为(0,1),
单调递减区间为(1,+∞).
(2)证明:由函数g(x)=xf(x)+p(2x2-x-1)
=xln x+p(x2-1),
得g′(x)=ln x+1+2px.
由(1)知,当p=1时,f(x)≤f(1)=0,
即不等式ln x≤x-1成立,
所以当p≤-时,g′(x)=ln x+1+2px≤(x-1)+1+2px=(1+2p)x≤0,
即g(x)在[1,+∞)上单调递减,
从而g(x)≤g(1)=0满足题意.
练习册系列答案
相关题目