题目内容
【题目】已知四棱锥P﹣ABCD,其三视图和直观图如图所示,E为BC中点. (Ⅰ)求此几何体的体积;
(Ⅱ)求证:平面PAE⊥平面PDE.
【答案】解:(Ⅰ)由三视图可知底面ABCD为矩形,AB=2,BC=4, 定点P在面ABCD内的射影为BC的中点E,棱锥的高为2,
∴此几何体的体积 .
证明:(Ⅱ)∵PE⊥平面ABCD,AE平面ABCD,∴PE⊥AE,
取AD中点F,∵AB=CE=BE=2,∴ ,∴AE⊥ED,
∵ED∩AE=E,∴AE⊥平面PED,∵AE平面PAE,
∴平面PAE⊥平面PDE.
【解析】(Ⅰ)由三视图可知底面ABCD为矩形,AB=2,BC=4,定点P在面ABCD内的射影为BC的中点E,棱锥的高为2,由此能求出此几何体的体积.(Ⅱ)推导出PE⊥AE,AE⊥ED,从而AE⊥平面PED,由此能证明平面PAE⊥平面PDE.
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.
练习册系列答案
相关题目
【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车 | 轿车 | 轿车 | |
舒适型 | 100 | 150 | |
标准型 | 300 | 450 | 600 |
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.
(I)求的值;
(II)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(III)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,设样本平均数为,求的概率.