题目内容

【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是

【答案】
【解析】解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆; 又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.
设圆心C(4,0)到直线y=kx﹣2的距离为d,
则d= ≤2,即3k2﹣4k≤0,
∴0≤k≤
∴k的最大值是
故答案为:
由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网