题目内容
【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.
【答案】解:(Ⅰ)因为向量 =(a, b)与 =(cosA,sinB)平行,
所以asinB﹣ =0,由正弦定理可知:sinAsinB﹣ sinBcosA=0,因为sinB≠0,
所以tanA= ,可得A= ;
(Ⅱ)a= ,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,
△ABC的面积为: =
【解析】(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a= ,b=2,通过余弦定理求出c,然后求解△ABC的面积.
练习册系列答案
相关题目