题目内容

【题目】在直角坐标平面内,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标分别为,曲线的参数方程为为参数).

(1)求直线的直角坐标方程;

(2)若直线和曲线只有一个交点,求的值.

【答案】(1) ;(2) .

【解析】试题分析:(Ⅰ)由x=ρcosθ,y=ρsinθ,可将A,B化为直角坐标,再由直线方程的形式,即可得到AB的方程;

(Ⅱ)运用同角的平方关系,可将曲线C化为普通方程即为圆,再由直线和圆相切:d=r,即可得到半径r.

试题解析:

(1)∵点的极坐标分别为

∴点 的直角坐标分别为

∴直线的直角坐标方程为

(2)由曲线的参数方程为参数),化为普通方程为

∵直线和曲线只有一个交点,

∴半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网