题目内容
(15分)已知
是数列
的前
项和,
(
,
),且
.
(1)求
的值,并写出
和
的关系式;
(2)求数列
的通项公式及
的表达式;
(
3)我们可以证明:若数列
有上界(即存在常数
,使得
对一切
恒成立)且单调递增;或数列
有下界(即存在常数
,使得
对一切
恒成立)且单调递减,则
存在.直接利用上述结论,证明:
存在.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205814388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205829480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205860277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205892914.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205907437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205938529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205954479.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205985348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206001348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206016401.png)
(2)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205829480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205814388.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206079156.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206110487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206141300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206157499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205938529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206110487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206219309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206250507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205938529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206282545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206297566.png)
(1)
.当
时,
①;
②
②—①得
.又
,即
时也成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206562793.png)
…………………………………………………………5分
(2)由(1)得
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
是首项为1,公差为1的等差数列,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
,
时,
,
,
,
又
,也满足上式,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207327771.png)
……………………10分
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207420222.png)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
单调递增,
又
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
存在……………………………………………15分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206328514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205907437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205892914.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206547872.png)
②—①得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206562793.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206594765.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206609356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206562793.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206828620.png)
(2)由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206952661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206968447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207015599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207046847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207218601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200205907437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207264921.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207296894.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207327771.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207342614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207327771.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206828620.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207420222.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232002076231487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207670509.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200207701837.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206625191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200206297566.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目