题目内容
(本题16分,第(1)小题3分;第(2)小题5分;第(3
)小题8分)
已知数列
和
的通项分别为
,
(
),集合
,
,设
. 将集合
中元素从小到大依次排列,构成数列
.
(1)写出
;
(2)求数列
的前
项的和;
(3)是否存在这样的无穷等差数列
:使得
(
)?若存在,请写出一个这样的
数列,并加以证明;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301162156.png)
已知数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301178449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301194466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301225524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301240541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301287488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301318933.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301350942.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301365519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301381314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301396615.png)
(1)写出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301412557.png)
(2)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301443467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301474410.png)
(3)是否存在这样的无穷等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301490427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301693448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301287488.png)
数列,并加以证明;若不存在,请说明理由.
(1)
(错1个扣1分)
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003017861998.png)
,
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003019111738.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302083724.png)
(3)存在。如
,
(不唯一)
(结论1分,通项2分
证明:
,所
以
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302644471.png)
假设
,则存在实数
,
,所以
,由于上式左边为整数,右边为分数,所以上式不成立,所以假设不成立,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302816504.png)
所以
。即:
满足要求。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200301771831.png)
(错1个扣1分)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003017861998.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003018961120.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003019111738.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302052764.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302083724.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302098474.png)
(3)存在。如
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302317804.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003025511009.png)
(结论1分,通项2分
证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003025821003.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302598159.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302629589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302644471.png)
假设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302676480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302691313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302722657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302769952.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302816504.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302847487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200302317804.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目