题目内容
(本小题满分l4分)已知数列
的前n项和为
,正数数列
中![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740381446.png)
(e为自然对数的底
)且
总有
是
与
的等差中项,
的等比中项.
(1) 求证:
有
;
(2) 求证:
有
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740318487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740350367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740365489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740381446.png)
(e为自然对数的底
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740396510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740412587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740428397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740350367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740459349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740474710.png)
(1) 求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740412587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740506613.png)
(2) 求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740412587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037405521369.png)
解:(1)
是
与
的等差中项![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740911256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037409423430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037409894535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037410204020.png)
(2)由(1)得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741114938.png)
6分
的等比中项
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037412082292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037412393497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037412544936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037412867118.png)
综上所述,总有
成立 14分
解法二:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037413171824.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037413322398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037413646661.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037413794428.png)
的等比中项
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037414265179.png)
ii)假设
时不等式
成立,
则n=k+1时要证明
只需证明:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037414881734.png)
即只需证明:
….9分
……..10分
只需证明![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037415821725.png)
只需证明
13分
由
可知上面结论都成立
综合(i)(ii)可知
,
成立 …..14分
法三:
n=1时同法一:
时左边证明同法一 10分
当
时,证明右边如下:
只需证明
11分
只需证明![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037419721598.png)
只需证明
13分
由
可知上面结论都成立
综上所述
,
成立 …..14分
注1:
必须
才行
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037422841294.png)
实际上![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037423001192.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037423151107.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037423462494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740428397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740350367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740459349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740911256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740927605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037409423430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037409894535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037410204020.png)
(2)由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741114938.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037411303191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741161169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740474710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741192646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037412082292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037412393497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037412544936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037412867118.png)
综上所述,总有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037405521369.png)
解法二:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037413171824.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037413322398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037413646661.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037413794428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740474710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741192646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037414265179.png)
ii)假设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741442661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037414571375.png)
则n=k+1时要证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037414731735.png)
只需证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037414881734.png)
即只需证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741520995.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037415512872.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037415663945.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037415821725.png)
只需证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037415981072.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037416291129.png)
综合(i)(ii)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740412587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037405521369.png)
法三:
n=1时同法一:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741676425.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203741676425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037417074239.png)
只需证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037417541103.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037417694943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037419721598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203742034970.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037415981072.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037416291129.png)
综上所述
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203740412587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037405521369.png)
注1:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037422371765.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203742253414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037422841294.png)
实际上
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037423001192.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037423151107.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232037423462494.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目