题目内容
【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在的直线上.
(1)求AD边所在直线的方程;
(2)求矩形ABCD外接圆的方程.
【答案】
(1)解:因为AB边所在直线的方程为x-3y-6=0,且AD与AB垂直,所以直线AD的斜率为-3.又因为点T(-1,1)在直线AD上,所以AD边所在直线的方程为y-1=-3(x+1),即3x+y+2=0
(2)解:由 可得点A的坐标为(0,-2).
因为矩形ABCD两条对角线的交点为M(2,0).
所以M为矩形ABCD外接圆的圆心.又|AM|= ,
从而矩形ABCD外接圆的方程为(x-2)2+y2=8
【解析】本题考查直线方程的求法,考查圆的方程的求法,考查向量数量积的求法,解题时要认真审题,注意直线性质的灵活运用.
练习册系列答案
相关题目