题目内容
【题目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的圆交AB于G,点P在 上运动(如图).若 =λ +μ ,其中λ,μ∈R,则6λ+μ的取值范围是( )
A.[1, ]
B.[ ,2 ]
C.[2,2 ]
D.[1,2 ]
【答案】C
【解析】解:建立如图所示的坐标系,
则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),
P(cosα,sinα)(0≤α≤ ),
由 =λ +μ 得,(cosα,sinα)=λ(2,1)+μ(﹣1, )
cosα=2λ﹣μ,sinα=λ+
λ= ,
∴6λ+μ=6( )+ =2(sinα+cosα)=2 sin( )
∵ ,∴sin( )
∴2 sin( )∈[2,2 ],即6λ+μ的取值范围是[2,2 ].
故选:C
【考点精析】关于本题考查的平面向量的基本定理及其意义,需要了解如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使才能得出正确答案.
练习册系列答案
相关题目
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 ;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.