题目内容
2.在棱长为1的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内(包括边)的动点,且A1F∥平面D1AE,沿A1F运动,将B1点所在的几何体削去,则剩余几何体的体积为( )A. | $\frac{3}{4}$ | B. | $\frac{7}{8}$ | C. | $\frac{11}{12}$ | D. | $\frac{23}{24}$ |
分析 分别取B1B、B1C1的中点M、N,连接AM、MN、AN,证明平面A1MN∥平面D1AE,可得点F的轨迹是线段MN,即可求出剩余几何体的体积.
解答 解:分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则
∵A1M∥D1E,A1M?平面D1AE,D1E?平面D1AE,∴A1M∥平面D1AE.
同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN内的相交直线,∴平面A1MN∥平面D1AE,
由此结合A1F∥平面D1AE,可得直线A1F?平面A1MN,即点F的轨迹是线段MN,
∴${V}_{{B}_{1}-AMN}$=$\frac{1}{3}×\frac{1}{2}×1×\frac{1}{2}×\frac{1}{2}$=$\frac{1}{24}$,
∴将B1点所在的几何体削去,剩余几何体的体积为1-$\frac{1}{24}$=$\frac{23}{24}$,
故选:D.
点评 本题考查了空间直线与平面平行关系的判定与性质,考查棱锥的体积公式,综合性较强,正确的作出图形是关键.
练习册系列答案
相关题目
7.由函数f(x)=sin2x的图象得到g(x)=cos(2x-$\frac{π}{3}$)的图象,可将f(x)的图象( )
A. | 向左平移$\frac{π}{6}$个单位 | B. | 向右平移$\frac{π}{6}$个单位 | ||
C. | 向右平移$\frac{π}{12}$个单位 | D. | 向左平移$\frac{π}{12}$个单位 |
14.函数 y=cos2x+2cosx的值域是( )
A. | [-1,3] | B. | $[-\frac{3}{2},3]$ | C. | $[-\frac{3}{2},-1]$ | D. | $[\frac{3}{2},3]$ |