题目内容
【题目】在△ABC中,a、b分别是角A、B所对的边,条件“a<b”是使“cosA>cosB”成立的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】C
【解析】解:(1.)∵a、b分别是角A、B所对的边,且a<b,∴0<∠A<∠B<π. 而在(0,π)上,函数f(x)=cosx为减函数.
∴cosA>cosB成立.
(2.)在(0,π)上,函数f(x)=cosx为减函数,0<∠A,∠B<π,cosA>cosB,
∴∠A<∠B,从而a<b.
所以前者是后者的充要条件.
故选C.
【考点精析】本题主要考查了余弦函数的单调性的相关知识点,需要掌握余弦函数的单调性:在上是增函数;在上是减函数才能正确解答此题.
练习册系列答案
相关题目
【题目】某工科院校对A,B两个专业的男女生人数进行调查,得到如下的列联表:
专业A | 专业B | 总计 | |
女生 | 12 | 4 | 16 |
男生 | 38 | 46 | 84 |
总计 | 50 | 50 | 100 |
(Ⅰ)从B专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?
(Ⅱ)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?
注: .
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.025 |
k | 1.323 | 2.072 | 3.841 | 5.024 |