题目内容
【题目】某工科院校对A,B两个专业的男女生人数进行调查,得到如下的列联表:
专业A | 专业B | 总计 | |
女生 | 12 | 4 | 16 |
男生 | 38 | 46 | 84 |
总计 | 50 | 50 | 100 |
(Ⅰ)从B专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?
(Ⅱ)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?
注: .
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.025 |
k | 1.323 | 2.072 | 3.841 | 5.024 |
【答案】解:(Ⅰ)设B专业的4名女生为甲、乙、丙、丁,随机选取两个共有(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)6种可能, 其中选到甲的共有3种可能,
则女生甲被选到的概率是 .
(Ⅱ)根据列联表中的数据 ,
由于4.762>3.841,因此在犯错误的概率不超过0.05的前提下认为工科院校中“性别”与“专业”有关系
【解析】(Ⅰ)先设B专业的4名女生为甲、乙、丙、丁,列举出随机选取两个共有6种可能,其中选到甲的共有3种可能,女生甲被选到的概率,计算相应的概率即可.(Ⅱ)根据列联表中的数据 ,与临界值比较,即可得到结论.
练习册系列答案
相关题目