题目内容

【题目】如图,四边形ABCD是☉O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.

(Ⅰ)证明:∠D=∠E;

(Ⅱ)设AD不是☉O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)由四点共圆性质可得∠D=∠CBE.再结合条件∠CBE=∠E,得证(2)由等腰三角形性质得OM⊥AD,即得AD∥BC, 因此∠A=∠CBE=∠E.而∠D=∠E,所以△ADE为等边三角形.

试题解析:解: (1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.

由已知得∠CBE=∠E,故∠D=∠E.

(2)设BC的中点为N,连结MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是☉O的直径,M为AD的中点,故OM⊥AD,

即MN⊥AD. 所以AD∥BC,故∠A=∠CBE.

又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网