题目内容

【题目】求下列曲线的标准方程:
(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.
(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.

【答案】解:(1)由椭圆+=1,得a2=8,b2=4,
∴c2=a2﹣b2=4,则焦点坐标为F(2,0),
∵直线y=x为双曲线的一条渐近线,
∴设双曲线方程为(λ>0),
,则λ+3λ=4,λ=1.
∴双曲线方程为:
(2)由3x﹣4y﹣12=0,得
∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),
∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:
y2=16x或x2=﹣12y.
【解析】(1)由椭圆方程求出双曲线的焦点坐标,设出以直线y=x为一条渐近线的双曲线方程(λ>0),然后结合焦点坐标求得λ,则曲线方程可求;
(2)求出直线在两坐标轴上的截距,然后直接分类代入抛物线方程得答案.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网