题目内容
【题目】亳州某商场举行购物抽奖活动,规定每位顾客从装有编号为0,1,2,3四个相同小求的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖;等于5中二等奖;等于4或3中三等奖.
(1)求中三等奖的概率;
(2)求不中奖的概率.
【答案】(1) ;(2) .
【解析】试题分析:1)设“中三等奖”为事件A,“中奖”为事件B,利用列举法能求出中三等奖的概率.(2)利用列举法求出中奖的概率,由此能求出不中奖的概率.
试题解析:
设“中三等奖”为事件A,“中奖”为事件B,
从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3), (1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.
(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果,
则中三等奖的概率为P(A)=.
(2)由(1)知两个小球号码相加之和等于3或4的取法有7种;
两个小球号码相加之和等于5的取法有2种:(2,3),(3,2).
两个小球号码相加之和等于6的取法有1种:(3,3).
则中奖概率为P(B)==.
所以不中奖的概率为.
练习册系列答案
相关题目