题目内容
【题目】如图,四棱锥中, ,侧面为等边三角形, , .
(Ⅰ)证明: 平面;
(Ⅱ)求与平面所成的角的大小.
【答案】(1)见解析(2)
【解析】试题分析:(Ⅰ)由问题,可根据线面垂直判定定理的条件要求,从题目条件去寻相关的信息,先证线线垂直,即,从而问题可得解;(Ⅱ)要求直线与平面所成角,一般步骤是先根据图形特点作出所求的线面角,接着将该所在三角形的其他要素(包括角、边或是三角形的形状等)算出来,再三角形的性质或是正弦定理、余弦定理来进行运算,从问题得于解决(类似问题也可以考虑采用坐标法来解决).
试题解析:(Ⅰ)取的中点E,连接,
则四边形为矩形,
所以,
所以,
因为侧面为等边三角形, ,
所以,且,
又因为,
所以,
所以.
又,
所以平面.
(Ⅱ)
过点作⊥于点,
因为,
所以平面.
又平面,
由平面与平面垂直的性质,
知平面,
在中,由,
得,
所以.
过点作平面于,连接,
则即为与平面所成的角,
因为平面,
所以平面,
又平面,
所以.
在中,由,
求得.
在中, ,
所以,
由,
得,
即,
解得,
所以,
故与平面所成角的正弦值为.
练习册系列答案
相关题目
【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低硕族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | 120 | 0.6 | |
第二组 | 195 | ||
第三组 | 100 | 0.5 | |
第四组 | 0.4 | ||
第五组 | 30 | 0.3 | |
第六组 | 15 | 0.3 |
(1)补全频率分布直方图并求的值(直接写结果);
(2)从年龄段在的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中至少有1人年龄在岁的概率.