题目内容
【题目】设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成封闭图形的面积.
【答案】
(1)解:∵f′(x)=2x+2 设f(x)=x2+2x+c,
根据f(x)=0有两等根,得△=4﹣4c=0解得c=1,即f(x)=x2+2x+1;
(2)解:S= = .
【解析】(1)根据导函数的解析式设出原函数的解析式,根据有两个相等的实根可得答案.(2)根据定积分的定义可得答案.
【考点精析】解答此题的关键在于理解基本求导法则的相关知识,掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.
练习册系列答案
相关题目