题目内容

【题目】如图所示,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,AFADaGEF的中点.

(1)求证:平面AGC⊥平面BGC

(2)GB与平面AGC所成角的正弦值.

【答案】(1)见解析;(2).

【解析】试题分析:(1).正方形ABCD,∵ABCD⊥ABEF且交于AB,∴CB⊥ABEF

∵AG,GBABEF, ∴CB⊥AG,CB⊥BG.AD=2a,AF= a, ABEF是矩形,GEF的中点.

∴AG=BG=,AB=2a, AB2=AG2+BG2, ∴AG⊥BG,∵BC∩BG=B,∴AG⊥平面CBG,AGAGC,故平

AGC⊥平面BGC.

(2).如图,(1)知面AGC⊥BGC,且交于GC,在平面BGC内作BH⊥GC,垂足为H,BH⊥平面AGC,

∴∠BGHGB与平面AGC所成的角.

R t△CBG

BG=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网