题目内容
【题目】已知分别为的三内角A,B,C的对边,其面积,在等差数列中,,公差.数列的前n项和为,且.
(1)求数列的通项公式;
(2)若,求数列的前n项和.
【答案】(1),;(2)
【解析】
(1)运用三角形的面积公式和余弦定理,解得a=b=c=2,由等差数列的通项公式可得an=2n;再由数列的通项与前n和的关系,可得数列{bn}为等比数列,求得bn;
(2)由(1)得,由此利用错位相减求和法能求出Tn.
(1)SacsinBac,∴ac=4,
又,=,
∴,∴b=2,
从而=∴,
故可得:,∴=2+2(n﹣1)=2n;
∵,∴当n=1时,,
当n≥2时,,
两式相减,得,(n≥2)
∴数列{}为等比数列,
∴.
(2)由(1)得,
∴img src="http://thumb.zyjl.cn/questionBank/Upload/2019/06/19/08/7eff97dd/SYS201906190802589321244578_DA/SYS201906190802589321244578_DA.024.png" width="18" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />= ++…+
=1×21+2×21+3×21+…+,
∴2=1×22+2×23+3×24+…+n2n+1,
∴﹣=1×21+(22+23+…+2n)﹣n2n+1,
即:﹣=(1-n)2n+1-2,
∴=(n﹣1)2n+1+2.
【题目】随着经济的发展,我市居民收入逐年增长,下表是我市一建设银行连续五年的储蓄存款(年底余额):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,,:
(1)填写下列表格并根据表格求关于的线性回归方程;
时间代号 | |||||
(2)通过(Ⅰ)中的方程,求出关于的回归方程,并用所求回归方程预测到2020年年底,该银行储蓄存款额可达多少?
【题目】已知某中学共有高一学生800人.在一次数学与地理的水平测试则试后,学校决定利用随机数表法从中抽取100人进行成绩抽样分析,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了随机数表的第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
地理 | 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | 4 |
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的人数共有.
①若在该样本中,数学成绩优秀率是30%,求,的值:
②在地理成绩及格的学生中,已知,,求数学成绩优秀的人数比及格的人数少的概率.
【题目】某地级市共有中学生,其中有学生在年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助元、元、元.经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学生中有会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有转为一般困难学生,特别困难的学生中有转为很困难学生.现统计了该地级市年到年共年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份取时代表年,取时代表年,……依此类推,且与(单位:万元)近似满足关系式.(年至年该市中学生人数大致保持不变)
(1)估计该市年人均可支配年收入为多少万元?
(2)试问该市年的“专项教育基金”的财政预算大约为多少万元?
附:对于一组具有线性相关关系的数据,,…,,其回归直线方程的斜率和截距的最小二乘估计分别为,.
【题目】如表提供了某厂节能降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出y关于x的回归直线方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
注: .
【题目】某地区年至年农村居民家庭人均纯收入(单位:千元)的数据如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析年至年该地区农村居民家庭人纯收入的变化情况,并预测该地区年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
.
参考数据:.