题目内容
【题目】某电脑公司有5名产品推销员,其工作年限与年推销金额的数据如表:
推销员编号 | 1 | 2 | 3 | 4 | 5 |
工作年限年 | 3 | 5 | 6 | 7 | 9 |
推销金额万元 | 2 | 3 | 3 | 4 | 5 |
求年推销金额y关于工作年限x的线性回归方程;
判断变量x与y之间是正相关还是负相关;
若第6名推销员的工作年限是11年,试估计他的年推销金额.
(参考数据,,
参考公式:线性回归方程中,,其中为样本平均数)
【答案】(1).
(2)变量x与y之间是正相关.
(3)万元.
【解析】分析:首先求出x,y的平均数,利用最小二乘法做出b的值,再利用样本中心点满足线性回归方程和前面做出的横标和纵标的平均值,求出a的值,写出线性回归方程.
根据,即可得出结论;
第6名推销员的工作年限为11年,即当时,把自变量的值代入线性回归方程,得到y的预报值,即估计出第6名推销员的年推销金额为万元.
详解:由题意知:,
于是:,,
故:所求回归方程为;
由于变量y的值随着x的值增加而增加,故变量x与y之间是正相关
将带入回归方程可以估计他的年推销金额为万元.
【题目】某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)
(I)应收集多少户山区家庭的样本数据?
(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为, , , ,,.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;
(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
超过2万元 | 不超过2万元 | 总计 | |
平原地区 | |||
山区 | 5 | ||
总计 |