题目内容
【题目】某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)
(I)应收集多少户山区家庭的样本数据?
(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为, , , ,,.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;
(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
超过2万元 | 不超过2万元 | 总计 | |
平原地区 | |||
山区 | 5 | ||
总计 |
【答案】(Ⅰ)45;(Ⅱ)0.45;(Ⅲ)答案见解析.
【解析】分析:(Ⅰ)由已知可得每户居民被抽取的概率为,根据古典概型概率公式可得结果;(Ⅱ)由直方图,利用符合条件矩形面积之和可求得该地区2017年家庭年收入超过万元的概率;(Ⅲ)样本数据中,年收入超过2万元的户数户,而样本数据中,有5户山区家庭的年收入超过2万元,完成列联表,求出,即可判断是否有的把握认为 “该地区2017年家庭年收入与地区有关” .
详解:(Ⅰ)由已知可得每户居民被抽取的概率为0.1,故应收集户山区家庭的样本数据.
(Ⅱ)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为.
(Ⅲ)样本数据中,年收入超过2万元的户数为户.
而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:
所以,
∴有的把握认为“该地区2017年家庭年收入与地区有关”.
【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数 ,
回归直线方程是: ,其中 ,
参考数据: , , , .
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
【题目】某电脑公司有5名产品推销员,其工作年限与年推销金额的数据如表:
推销员编号 | 1 | 2 | 3 | 4 | 5 |
工作年限年 | 3 | 5 | 6 | 7 | 9 |
推销金额万元 | 2 | 3 | 3 | 4 | 5 |
求年推销金额y关于工作年限x的线性回归方程;
判断变量x与y之间是正相关还是负相关;
若第6名推销员的工作年限是11年,试估计他的年推销金额.
(参考数据,,
参考公式:线性回归方程中,,其中为样本平均数)