16.工业上设计将VOSO4、SO2杂质除去并回收得到V2O5的流程如下:
请回答下列问题:
(1)步骤①所得废渣的成分是SiO2(写化学式),操作Ⅰ的名称过滤.
(2)步骤②、③的变化过程可简化为(下式R表示VO2+,HA表示有机萃取剂):
R2(SO4)n(水层)+2nHA(有机层)?2RAn(有机层)+nH2SO4(水层)
②中萃取时必须加入适量碱,其原因是加入碱中和硫酸,促使平衡正向移动,提高钒的萃取率.
③中X试剂为H2SO4.
(3)④的离子方程式为ClO3-+6VO2++9H2O=Cl-+6VO3-+18H+.
(4)25℃时,取样进行试验分 析,得到钒沉淀率和溶液pH之间关系如下表:
结合上表,在实际生产中,⑤中加入氨水,调节溶液的最佳pH为1.7-1.8.
若钒沉淀率为93.1%时不产生Fe(OH)3沉淀,则溶液中c(Fe3+)<2.6×10-3mol•L-1.(已知:25℃时,K电[Fe(OH)3]=2.6×10-33)
(5)该工艺流程中,可以循环利用的物质有有机萃取剂和氨气.
请回答下列问题:
(1)步骤①所得废渣的成分是SiO2(写化学式),操作Ⅰ的名称过滤.
(2)步骤②、③的变化过程可简化为(下式R表示VO2+,HA表示有机萃取剂):
R2(SO4)n(水层)+2nHA(有机层)?2RAn(有机层)+nH2SO4(水层)
②中萃取时必须加入适量碱,其原因是加入碱中和硫酸,促使平衡正向移动,提高钒的萃取率.
③中X试剂为H2SO4.
(3)④的离子方程式为ClO3-+6VO2++9H2O=Cl-+6VO3-+18H+.
(4)25℃时,取样进行试验分 析,得到钒沉淀率和溶液pH之间关系如下表:
pH | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | 2.1 |
钒沉淀率% | 88.1 | 94.8 | 96.5 | 98.0 | 98.8 | 98.8 | 96.4 | 93.1 | 89.3 |
若钒沉淀率为93.1%时不产生Fe(OH)3沉淀,则溶液中c(Fe3+)<2.6×10-3mol•L-1.(已知:25℃时,K电[Fe(OH)3]=2.6×10-33)
(5)该工艺流程中,可以循环利用的物质有有机萃取剂和氨气.
13.辉铜矿含铜成分高,是最重要的炼铜矿石,其主要成分为Cu2S,还含有Fe2O3、SO2及一些不溶性杂质.以辉铜矿为原料生产碱式碳酸铜的工艺流程如下:
已知:①[Cu(NH3)4]SO4在常温下稳定,在热水中会分解生成NH3;
②部分金属阳离子生产氢氧化物沉淀的pH范围如下表所示(开始沉淀的pH按金属离子浓度为1.0mol•L-1计算):
回答下列问题:
(1)能加快浸取速率的措施有粉碎矿石、升高温度(或适当增加酸的浓度或搅拌).(任写2条)
(2)浸取后得到的浸出液中含有CuSO4、MnSO4,写出浸取时产生CuSO4、MnSO4反应的化学方程式
2MnO2+Cu2S+4H2SO4=S↓+2CuSO4+2MnSO4+4H2O;,滤渣Ⅰ的成分为MnSO4、SiO2和S.
(3)“除铁”的方法是通过调节溶液pH,使Fe3+水解转化为Fe(OH)3,加入的试剂A可以是氨水(填化学式),调节溶液pH的范围为3.2≤PH<4.4.
(4)“沉锰”(除Mn2+)过程中发生反应的离子方程式为Mn2++CO32-=MnCO3↓.“赶氨”时,最适宜的操作方法为加热.
(5)测定碱式碳酸铜纯度可用滴定法称取6.2500g样品于100mL小烧杯中,加入20mL蒸馏水搅拌,再加入8mL6mol•L-1硫酸使其完全溶解,冷却后定量转移至250mL容量瓶中,加水定容,摇匀,称取25.00mL配好的溶液于锥形瓶中,加入40.00mL0.2000mol•L-1EDTA溶液,然后计入MnO2,再用0.2000mol•L的Zn2+标准溶液滴定至终点,消耗标准溶液18.00mL.已知EDTA与Cu2+、Zn2+均按物质的量比1:1反应,则样品中Cu2(OH)2CO2的质量分数为78.14%.
已知:①[Cu(NH3)4]SO4在常温下稳定,在热水中会分解生成NH3;
②部分金属阳离子生产氢氧化物沉淀的pH范围如下表所示(开始沉淀的pH按金属离子浓度为1.0mol•L-1计算):
开始沉淀的pH | 沉淀完全的pH | |
Fe3+ | 1.1 | 3.2 |
Mg2+ | 8.3 | 9.8 |
Cu2+ | 4.4 | 6.4 |
(1)能加快浸取速率的措施有粉碎矿石、升高温度(或适当增加酸的浓度或搅拌).(任写2条)
(2)浸取后得到的浸出液中含有CuSO4、MnSO4,写出浸取时产生CuSO4、MnSO4反应的化学方程式
2MnO2+Cu2S+4H2SO4=S↓+2CuSO4+2MnSO4+4H2O;,滤渣Ⅰ的成分为MnSO4、SiO2和S.
(3)“除铁”的方法是通过调节溶液pH,使Fe3+水解转化为Fe(OH)3,加入的试剂A可以是氨水(填化学式),调节溶液pH的范围为3.2≤PH<4.4.
(4)“沉锰”(除Mn2+)过程中发生反应的离子方程式为Mn2++CO32-=MnCO3↓.“赶氨”时,最适宜的操作方法为加热.
(5)测定碱式碳酸铜纯度可用滴定法称取6.2500g样品于100mL小烧杯中,加入20mL蒸馏水搅拌,再加入8mL6mol•L-1硫酸使其完全溶解,冷却后定量转移至250mL容量瓶中,加水定容,摇匀,称取25.00mL配好的溶液于锥形瓶中,加入40.00mL0.2000mol•L-1EDTA溶液,然后计入MnO2,再用0.2000mol•L的Zn2+标准溶液滴定至终点,消耗标准溶液18.00mL.已知EDTA与Cu2+、Zn2+均按物质的量比1:1反应,则样品中Cu2(OH)2CO2的质量分数为78.14%.
9.某实验小组模拟“侯氏制碱法”制纯碱,并进行以下探究:
(1)检验纯碱样品中是否混有NaHCO3,请选择下列装置设计实验,并完成下表:
(2)测定该纯碱样品的纯度:称取m1g样品,置于小烧杯中,加水溶解,滴加足量CaCl2溶液.将反应混和物过滤、洗涤(填操作)、干燥、称量为m2g.该纯碱样品的纯度为$\frac{106{m}_{2}}{{m}_{1}}$%.
(3)该小组同学在0.1mol/LNaHCO3溶液中滴加酚酞溶液1滴,溶液没有什么变化,但加热后显淡红色,加热较长时间后冷却,红色不褪去.为探究原因,进行了下列实验:
实验1:加热0.1mol/LNaHCO3溶液,测得溶液pH变化如下表
但当温度恢复到10℃,测得溶液pH=9.8.
实验2:加热0.1mol/LNaHCO3溶液,将产生的气体通入澄清石灰水,澄清石灰水变浑浊.
①用离子方程式表示0.1mol/LNaHCO3溶液中存在的平衡(除水电离平衡外)HCO3-?H++CO32-、HCO3-+H2O?H2CO3+OH-.这两个平衡以水解平衡为主.
②结合实验1、2分析,加热0.1mol/LNaHCO3溶液,pH增大的原因可能是NaHCO3分解生成Na2CO3,碱性增强(答一条).
0 167753 167761 167767 167771 167777 167779 167783 167789 167791 167797 167803 167807 167809 167813 167819 167821 167827 167831 167833 167837 167839 167843 167845 167847 167848 167849 167851 167852 167853 167855 167857 167861 167863 167867 167869 167873 167879 167881 167887 167891 167893 167897 167903 167909 167911 167917 167921 167923 167929 167933 167939 167947 203614
(1)检验纯碱样品中是否混有NaHCO3,请选择下列装置设计实验,并完成下表:
选择的装置 (填编号) | 实验现象 | 实验结论 |
AB或AC或ACB | B变浑浊或C变蓝或C变蓝、B变浑 | 样品含 NaHCO3 |
(3)该小组同学在0.1mol/LNaHCO3溶液中滴加酚酞溶液1滴,溶液没有什么变化,但加热后显淡红色,加热较长时间后冷却,红色不褪去.为探究原因,进行了下列实验:
实验1:加热0.1mol/LNaHCO3溶液,测得溶液pH变化如下表
温度(℃) | 10 | 20 | 30 | 50 | 70 | 80 | 100 |
pH | 8.3 | 8.4 | 8.5 | 8.9 | 9.4 | 9.6 | 10.1 |
实验2:加热0.1mol/LNaHCO3溶液,将产生的气体通入澄清石灰水,澄清石灰水变浑浊.
①用离子方程式表示0.1mol/LNaHCO3溶液中存在的平衡(除水电离平衡外)HCO3-?H++CO32-、HCO3-+H2O?H2CO3+OH-.这两个平衡以水解平衡为主.
②结合实验1、2分析,加热0.1mol/LNaHCO3溶液,pH增大的原因可能是NaHCO3分解生成Na2CO3,碱性增强(答一条).