【题目】小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:
.小云所住小区5月1日至30日的厨余垃圾分出量统计图:
.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:
时段 | 1日至10日 | 11日至20日 | 21日至30日 |
平均数 | 100 | 170 | 250 |
(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)
(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);
(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.
【题目】小云在学习过程中遇到一个函数.下面是小云对其探究的过程,请补充完整:
(1)当时,对于函数,即,当时,随的增大而 ,且;对于函数,当时,随的增大而 ,且;结合上述分析,进一步探究发现,对于函数,当时,随的增大而 .
(2)当时,对于函数,当时,与的几组对应值如下表:
0 | 1 | 2 | 3 | |||||
0 | 1 |
综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当时的函数的图象.
(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数的图象有两个交点,则的最大值是 .