题目内容
【题目】如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.
(1)求证:∠ADC=∠AOF;
(2)若sinC=,BD=8,求EF的长.
【答案】(1)见解析;(2)2.
【解析】
(1)连接OD,根据CD是⊙O的切线,可推出∠ADC+∠ODA=90°,根据OF⊥AD,∠AOF+∠DAO=90°,根据OD=OA,可得∠ODA=∠DAO,即可证明;
(2)设半径为r,根据在Rt△OCD中,,可得,AC=2r,由AB为⊙O的直径,得出∠ADB=90°,再根据推出OF⊥AD,OF∥BD,然后由平行线分线段成比例定理可得,求出OE,,求出OF,即可求出EF.
(1)证明:连接OD,
∵CD是⊙O的切线,
∴OD⊥CD,
∴∠ADC+∠ODA=90°,
∵OF⊥AD,
∴∠AOF+∠DAO=90°,
∵OD=OA,
∴∠ODA=∠DAO,
∴∠ADC=∠AOF;
(2)设半径为r,
在Rt△OCD中,,
∴,
∴,
∵OA=r,
∴AC=OC-OA=2r,
∵AB为⊙O的直径,
∴∠ADB=90°,
又∵OF⊥AD,
∴OF∥BD,
∴,
∴OE=4,
∵,
∴,
∴.
练习册系列答案
相关题目