题目内容
【题目】如图,在矩形ABCD中, AB=3,BC=4,将矩形ABCD绕点C旋转,点A、B、D的对应点分别为A’ 、B’、 D’,当A’ 落在边CD的延长线上时,边A’ D’ 与边 AD的延长线交于点F,联结CF,那么线段CF的长度为____.
【答案】
【解析】
由勾股定理可求A'C=5,可得A'D= A'C-CD=2,由△ECD∽△A'CB',对应边成比例即可求出DE的长,再由△A'DF∽△CDE求出DF的长,最后在Rt△DFC中由勾股定理即可求出DF.
解:由旋转前后对应边相等可知:A'B'=AB=3,B'C=BC=4
∴由勾股定理可知:A'C=,
∴A'D= A'C-CD=2,
又∠ADC=∠B'=90°,且∠ECD=∠A'CB',
∴△ECD∽△A'CB',
∴,代入数据:,
∴,
又A'F∥CE,
∴∠CED=∠A'FD,且∠EDC=∠FDA',
∴△A'DF∽△CDE,
,代入数据:,
∴,
在Rt△DFC中由勾股定理可知:
.
故答案为:.
练习册系列答案
相关题目