【题目】如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=_____.
【题目】如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )
A. 56° B. 62° C. 68° D. 78°
【题目】若一组数据a,b,c的平均数为5,方差为4,那么数据a+2,b+2,c+2的平均数和方差分别是( )
A.5,4B.4,5C.7,4D.7,3
【题目】如图,AT是⊙O的切线,OD⊥BC于点D,并且AT=10cm,AC=20cm,OD=4cm,则半径OC=( )
A. 8.5cm B. 8cm C. 9.5cm D. 9cm
【题目】如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
【题目】如图,在平面直角坐标系xOy中,已知直线与反比例函数(k≠0)的图象交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且AB⊥OA.
(1)求反比例函数的解析式;
(2)求点B的坐标;
(3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OA、OB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)
【题目】如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求EF的长.
【题目】孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.
(1)孔明同学调查的这组学生共有_______人;
(2)这组数据的众数是_____元,中位数是_____元;
(3)若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?
【题目】如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是_______.
【题目】已知点A、B分别在反比例函数(x>0),(x>0)的图象上,且∠AOB=90°,则∠B=30°,则k的取值为( )
A. B. C. ﹣2 D. ﹣3