题目内容
【题目】如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
【答案】(1),顶点D(2,);(2)C(,0)或(,0)或(,0);(3)
【解析】
(1)抛物线的顶点D的横坐标是2,则x2,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入函数表达式,即可求解;
(2)分AB=AC、AB=BC、AC=BC,三种情况求解即可;
(3)由S△PABPHxB,即可求解.
(1)抛物线的顶点D的横坐标是2,则x2①,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3②,联立①、②解得:a,b,c=﹣3,∴抛物线的解析式为:yx2x﹣3.
当x=2时,y,即顶点D的坐标为(2,);
(2)A(0,﹣3),B(5,9),则AB=13,设点C坐标(m,0),分三种情况讨论:
①当AB=AC时,则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);
②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0);
③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=,则点C坐标为(,0).
综上所述:存在,点C的坐标为:(±4,0)或(5,0)或(,0);
(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k,故函数的表达式为:yx﹣3,设点P坐标为(m,m2m﹣3),则点H坐标为(m,m﹣3),S△PABPHxB(m2+12m)=-6m2+30m=,当m=时,S△PAB取得最大值为:.
答:△PAB的面积最大值为.