题目内容
【题目】已知关于x的一元二次方程 x2-6x+m+4=0有两个实数根 x1,x2.
(1)求m的取值范围;
(2)若 x1,x2满足x2-2x1=-3 ,求m的值.
【答案】(1)m≤5;(2)m=5.
【解析】试题分析:
(1)由原方程有两个实数根可知:根的判别式△,由此列出关于“m”的表达式,解不等式即可求得m的取值范围;
(2)由方程 x2-6x+m+4=0有两个实数根 x1,x2可得:x1+x2=6,x1·x2=m+4,结合x2-2x1=-3即可解得m的值.
试题解析:
(1)∵关于x的一元二次方程x2-6x+m+4 有实数根,
∴△ ≥0,即:△=(-6)2-4×1×(m+4)≥0 ,
∴36-4m-16≥0,解得:m≤5;
(2)∵方程 x2-6x+m+4=0有两个实数根 x1,x2,
∴ x1+x2=6,x1·x2=m+4,
又∵ x2-2x1=-3,
∴由此可解得x1=x2=3,
∴m+4=x1·x2=9,
∴m=5.
练习册系列答案
相关题目