题目内容
【题目】已知一次函数和反比例函数.
如图1,若,且函数、的图象都经过点.求m,k的值;
如图2,过点作y轴的平行线l与函数的图象相交于点B,与反比例函数的图象相交于点C.
若,直线l与函数的图象相交点当点B、C、D中的一点到另外两点的距离相等时,求的值;
过点B作x轴的平行线与函数的图象相交与点当的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.
【答案】(1)m=12,k=2;(2)①m-n=1或m-n=4;②k=1,定值d=1
【解析】
(1)将点A的坐标代入一次函数表达式即可求解,将点A的坐标代入反比例函数表达式,即可求解;
(2)①BD=2+n﹣m,BC=m﹣n,DC=2+n﹣n=2,由BD=BC或BD=DC或BC=CD得:m﹣n=1或0或2,即可求解;
②点E的坐标为(,m),d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),即可求解.
解:(1)当n=﹣2时,y1=kx﹣2,
将点A(3,4)代入一次函数y1=kx﹣2
得:3k﹣2=4,
解得:k=2,
将点A(3,4)代入反比例函数得:m=3×4=12;
∴m=12,k=2;
(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),
则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2
则BD=BC或BD=DC或BC=CD,
即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m﹣n=2,
即:m﹣n=1或0或2或4,
当m﹣n=0时,m=n与题意不符,
点D不能在C的下方,即BC=CD也不存在,n+2>n,故m﹣n=2不成立,
故m﹣n=1或m﹣n=4;
②点E的横坐标为:,
当点E在点B左侧时,
d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),
m﹣n的值取不大于1的任意数时,d始终是一个定值,
当1﹣=0时,此时k=1,从而d=1.
当点E在点B右侧时,
同理BC+BE=(m﹣n)(1+)﹣1,
当1+=0,k=﹣1时,(不合题意舍去)
故k=1,d=1.
【题目】为了解某校学生的身高情况,王老师随机抽取该校男生、女生进行抽样调查,已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:
组别 | 身高 |
身高情况分组表
根据图表提供的信息,回答下列问题:
(1)样本中,女生身高在组的人数有_________人;
(2)在上面的扇形统计图中,表示组的扇形的圆心角是_________°;
(3)已知该校共有男生800人,女生760人,请估计该校身高在之间的学生约有多少人?