题目内容
在梯形纸片ABCD中,AD//BC,AD>CD. 将纸片沿过点D的直线折叠,使点C落在AD边上的点C′处,折痕DE交BC于点E,连接C′E,则四边形CDC′E的形状准确地说应为(■).
A.矩形 B. 菱形
C. 梯形 D. 平行四边形
A.矩形 B. 菱形
C. 梯形 D. 平行四边形
B
四边形CDC′E是菱形.
理由:根据折叠的性质,可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,
∵AD∥BC,
∴∠C′DE=∠CED,
∴∠CDE=∠CED,
∴CD=CE,
∴CD=C′D=C′E=CE,
∴四边形CDC′E为菱形.
故选B.
理由:根据折叠的性质,可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,
∵AD∥BC,
∴∠C′DE=∠CED,
∴∠CDE=∠CED,
∴CD=CE,
∴CD=C′D=C′E=CE,
∴四边形CDC′E为菱形.
故选B.
练习册系列答案
相关题目