ÌâÄ¿ÄÚÈÝ
Èçͼ£¬°Ñ¡÷OAB·ÅÖÃÓÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¡ÏOAB=90¡ã£¬OA=2£¬AB=
£¬°Ñ¡÷OABÑØxÖáµÄ¸º·½ÏòƽÒÆ2OAµÄ³¤¶ÈºóµÃµ½¡÷DCE£®
£¨1£©Èô¹ýÔµãµÄÅ×ÎïÏßy=ax2+bx+c¾¹ýµãB¡¢E£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãPÔÚ¸ÃÅ×ÎïÏßÉÏÒƶ¯£¬µ±µãPÔÚµÚÒ»ÏóÏÞÄÚʱ£¬¹ýµãP×÷PQ¡ÍxÖáÓÚµãQ£¬Á¬½áOP£®ÈôÒÔO¡¢P¡¢QΪ¶¥µãµÄÈý½ÇÐÎÓëÒÔB¡¢C¡¢EΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£¬Ö±½Óд³öµãPµÄ×ø±ê£»
£¨3£©ÈôµãM£¨-4£¬n£©ÔÚ¸ÃÅ×ÎïÏßÉÏ£¬Æ½ÒÆÅ×ÎïÏߣ¬¼ÇƽÒƺóµãMµÄ¶ÔÓ¦µãΪM¡ä£¬µãBµÄ¶ÔÓ¦µãΪB¡ä£®µ±Å×ÎïÏßÏò×ó»òÏòÓÒƽÒÆʱ£¬ÊÇ·ñ´æÔÚij¸öλÖã¬Ê¹ËıßÐÎM¡äB¡äCDµÄÖܳ¤×î¶Ì£¿Èô´æÔÚ£¬Çó³ö´ËʱÅ×ÎïÏߵĽâÎöʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
3 |
2 |
£¨1£©Èô¹ýÔµãµÄÅ×ÎïÏßy=ax2+bx+c¾¹ýµãB¡¢E£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãPÔÚ¸ÃÅ×ÎïÏßÉÏÒƶ¯£¬µ±µãPÔÚµÚÒ»ÏóÏÞÄÚʱ£¬¹ýµãP×÷PQ¡ÍxÖáÓÚµãQ£¬Á¬½áOP£®ÈôÒÔO¡¢P¡¢QΪ¶¥µãµÄÈý½ÇÐÎÓëÒÔB¡¢C¡¢EΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£¬Ö±½Óд³öµãPµÄ×ø±ê£»
£¨3£©ÈôµãM£¨-4£¬n£©ÔÚ¸ÃÅ×ÎïÏßÉÏ£¬Æ½ÒÆÅ×ÎïÏߣ¬¼ÇƽÒƺóµãMµÄ¶ÔÓ¦µãΪM¡ä£¬µãBµÄ¶ÔÓ¦µãΪB¡ä£®µ±Å×ÎïÏßÏò×ó»òÏòÓÒƽÒÆʱ£¬ÊÇ·ñ´æÔÚij¸öλÖã¬Ê¹ËıßÐÎM¡äB¡äCDµÄÖܳ¤×î¶Ì£¿Èô´æÔÚ£¬Çó³ö´ËʱÅ×ÎïÏߵĽâÎöʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÒÀÌâÒâµÃ£ºB(2£¬
)£®
¡ßOC=2£¬CE=
£¬¡àE(-2£¬
)£®
¡ßÅ×ÎïÏß¾¹ýÔµãºÍµãB¡¢E£¬¡àÉèÅ×ÎïÏߵĽâÎöʽΪy=ax2£¨a¡Ù0£©£®
¡ßÅ×ÎïÏß¾¹ýµãB(2£¬
)£¬
¡à
=4a£®½âµÃ£ºa=
£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=
x2£»
£¨2£©¡ßµãPÔÚÅ×ÎïÏßÉÏ£¬
¡àÉèµãPµÄ×ø±êΪ£¨x£¬
x2£©£®
·ÖÁ½ÖÖÇé¿ö£º
£¨i£©µ±¡÷OQP¡×¡÷BECʱ£¬Ôò
=
£¬¼´
=
£¬½âµÃ£ºx=1£¬
¡àµãPµÄ×ø±êΪ£¨1£¬
£©£»
£¨ii£©µ±¡÷PQO¡×¡÷BECʱ£¬Ôò
=
£¬¼´
=
£¬½âµÃ£ºx=
£¬
¡àµãPµÄ×ø±êΪ£¨
£¬
£©£®
×ÛÉÏËùÊö£¬·ûºÏÌõ¼þµÄµãPµÄ×ø±êÊÇP(1£¬
)»òP(
£¬
)£»
£¨3£©´æÔÚ£®
ÒòΪÏ߶ÎM'B'ºÍCDµÄ³¤ÊǶ¨Öµ£¬ËùÒÔҪʹËıßÐÎM'B'CDµÄÖܳ¤×î¶Ì£¬Ö»ÒªÊ¹M'D+CB'×î¶Ì£®Èç¹û½«Å×ÎïÏßÏòÓÒƽÒÆ£¬
ÏÔÈ»ÓÐM¡äD+CB¡ä£¾MD+CB£¬Òò´Ë²»´æÔÚij¸öλÖã¬Ê¹ËıßÐÎM¡äB¡äCDµÄÖܳ¤×î¶Ì£¬ÏÔȻӦ¸Ã½«Å×ÎïÏßy=
x2Ïò×óƽÒÆ£®
ÓÉÌâÖªM£¨-4£¬6£©£®
ÉèÅ×ÎïÏßÏò×óƽÒÆÁËn¸öµ¥Î»£¬ÔòµãM'ºÍB¡äµÄ×ø±ê·Ö±ðΪM¡ä£¨-4-n£¬6£©ºÍB¡ä£¨2-n£¬
£©£®
ÒòΪCD=2£¬Òò´Ë½«µãB¡äÏò×óƽÒÆ2¸öµ¥Î»µÃB¡å£¨-n£¬
£©£®
ҪʹM'D+CB'×î¶Ì£¬Ö»ÒªÊ¹M'D+DB¡å×î¶Ì£®
µãM¡ä¹ØÓÚxÖá¶Ô³ÆµãµÄ×ø±êΪM¡å£¨-4-n£¬-6£©£®
ÉèÖ±ÏßM¡åB¡åµÄ½âÎöʽy=kx+b£¨k¡Ù0£©£¬µãDÓ¦ÔÚÖ±ÏßM¡åB¡åÉÏ£¬
¡àÖ±ÏßM¡åB¡åµÄ½âÎöʽΪy=
x+
½«B¡å£¨-n£¬
£©´úÈ룬ÇóµÃn=
£®
¹Ê½«Å×ÎïÏßÏò×óƽÒÆ
¸öµ¥Î»Ê±£¬ËıßÐÎM¡äB¡äCDµÄÖܳ¤×î¶Ì£¬´ËʱÅ×ÎïÏߵĽâÎöʽΪy=
(x+
)2£®
3 |
2 |
¡ßOC=2£¬CE=
3 |
2 |
3 |
2 |
¡ßÅ×ÎïÏß¾¹ýÔµãºÍµãB¡¢E£¬¡àÉèÅ×ÎïÏߵĽâÎöʽΪy=ax2£¨a¡Ù0£©£®
¡ßÅ×ÎïÏß¾¹ýµãB(2£¬
3 |
2 |
¡à
3 |
2 |
3 |
8 |
¡àÅ×ÎïÏߵĽâÎöʽΪy=
3 |
8 |
£¨2£©¡ßµãPÔÚÅ×ÎïÏßÉÏ£¬
¡àÉèµãPµÄ×ø±êΪ£¨x£¬
3 |
8 |
·ÖÁ½ÖÖÇé¿ö£º
£¨i£©µ±¡÷OQP¡×¡÷BECʱ£¬Ôò
PQ |
CE |
OQ |
BE |
| ||
|
x |
4 |
¡àµãPµÄ×ø±êΪ£¨1£¬
3 |
8 |
£¨ii£©µ±¡÷PQO¡×¡÷BECʱ£¬Ôò
PQ |
BE |
OQ |
EC |
| ||
4 |
x | ||
|
64 |
9 |
¡àµãPµÄ×ø±êΪ£¨
64 |
9 |
512 |
27 |
×ÛÉÏËùÊö£¬·ûºÏÌõ¼þµÄµãPµÄ×ø±êÊÇP(1£¬
3 |
8 |
64 |
9 |
512 |
27 |
£¨3£©´æÔÚ£®
ÒòΪÏ߶ÎM'B'ºÍCDµÄ³¤ÊǶ¨Öµ£¬ËùÒÔҪʹËıßÐÎM'B'CDµÄÖܳ¤×î¶Ì£¬Ö»ÒªÊ¹M'D+CB'×î¶Ì£®Èç¹û½«Å×ÎïÏßÏòÓÒƽÒÆ£¬
ÏÔÈ»ÓÐM¡äD+CB¡ä£¾MD+CB£¬Òò´Ë²»´æÔÚij¸öλÖã¬Ê¹ËıßÐÎM¡äB¡äCDµÄÖܳ¤×î¶Ì£¬ÏÔȻӦ¸Ã½«Å×ÎïÏßy=
3 |
8 |
ÓÉÌâÖªM£¨-4£¬6£©£®
ÉèÅ×ÎïÏßÏò×óƽÒÆÁËn¸öµ¥Î»£¬ÔòµãM'ºÍB¡äµÄ×ø±ê·Ö±ðΪM¡ä£¨-4-n£¬6£©ºÍB¡ä£¨2-n£¬
3 |
2 |
ÒòΪCD=2£¬Òò´Ë½«µãB¡äÏò×óƽÒÆ2¸öµ¥Î»µÃB¡å£¨-n£¬
3 |
2 |
ҪʹM'D+CB'×î¶Ì£¬Ö»ÒªÊ¹M'D+DB¡å×î¶Ì£®
µãM¡ä¹ØÓÚxÖá¶Ô³ÆµãµÄ×ø±êΪM¡å£¨-4-n£¬-6£©£®
ÉèÖ±ÏßM¡åB¡åµÄ½âÎöʽy=kx+b£¨k¡Ù0£©£¬µãDÓ¦ÔÚÖ±ÏßM¡åB¡åÉÏ£¬
¡àÖ±ÏßM¡åB¡åµÄ½âÎöʽΪy=
6 |
n |
24 |
n |
½«B¡å£¨-n£¬
3 |
2 |
16 |
5 |
¹Ê½«Å×ÎïÏßÏò×óƽÒÆ
16 |
5 |
3 |
8 |
16 |
5 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿