题目内容
【题目】如图,∠AOB=α,∠COD=β(α>β),OC与OB重合,OD在∠AOB外,射线OM、ON分别是∠AOC、∠BOD的角平分线.
(1)①若α=100°,β=60°,则∠MON等于多少;
②在①的条件下∠COD绕点O逆时针旋转n°(0<n<100(且n≠60)时,求∠MON的度数;
(2)直接写出∠COD绕点O逆时针旋转n°(0<n<360)时∠MON的值(用含α、β的式子表示).
【答案】(1)①∠MON=80°;②∠MON=80°;(2)∠MON=(α+β)或180°﹣(α+β).
【解析】
(1)①根据角平分线的定义求出∠BOM和∠CON的度数,然后相加即可得出答案;
②根据旋转的性质可知∠BOC=n°,分两种情况进行讨论:如图1,∠BOD=60°﹣n°,∠AOC=100°﹣n°,根据角平分线的定义得出∠COM和∠BON的度数,然后根据∠MON=∠COM+∠COB+∠BON进行计算即可得出结论;如图2,∠BOD=n°﹣60°,∠AOC=100°﹣n°,根据角平分线的定义得出∠COM和∠BON的度数,然后根据∠MON=∠COM+∠COD+∠BON进行计算即可得出结论;
(2)根据①、②的解题思路即可得到结论.
(1)①∵OM,ON分别是∠AOC,∠BOD的角平分线,
∴∠BOM=∠AOB,∠BON=∠BOD,
∴∠MON=(∠AOB+∠BOD),
又∵∠AOB=100°,∠COD=60°,
∴∠MON=(∠AOB+∠BOD)=×(100°+60°)=80°.
②如图1,∵∠COD绕点O逆时针旋转n°,
∴∠BOC=n°,
∴∠BOD=60°﹣n°,∠AOC=100°﹣n°,
∵OM,ON分别是∠AOC,∠BOD的角平分线,
∴∠COM=∠AOC=50°﹣n°,∠BON=∠BOD=30°﹣n°,
∴∠MON=∠COM+∠COB+∠BON=80°;
如图2,∵∠COD绕点O逆时针旋转n°,
∴∠BOC=n°,
∴∠BOD=n°﹣60°,∠AOC=100°﹣n°,
∵OM,ON分别是∠AOC,∠BOD的角平分线,
∴∠COM=∠AOC=50°﹣n°,∠DON=∠BOD=n°﹣30°,
∴∠MON=∠COM+∠COD+∠DON=80°;
(2)∵OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β,
∴∠MON=(α+β)或180°﹣(α+β);