题目内容
【题目】在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.
(1)求OC的长;
(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;
(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.
【答案】(1)20;(2)t=15s或17s (3)s.
【解析】
(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q的速度,由此即可得到结论.
(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.
(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.
(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.
(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴ t=15(s);
当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴ t=17(s).
综上所述:t=15s或17s.
(3)P运动到原点时,t==s,此时QB=2×=>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:(s),故提前的时间为:-40=(s).
练习册系列答案
相关题目