题目内容
【题目】如图,在直角三角形ABC中,ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.
(1)线段A1C1的长度是 ,∠CBA1的度数是 .
(2)连结CC1,求证:四边形CBA1C1是平行四边形.
【答案】(1)10, 135°;(2)证明见解析.
【解析】
(1)由于将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1,根据旋转的性质可以得到A1C1=AC,∠CBC1=90°,而△ABC是等腰直角三角形,利用等腰直角三角形的性质即可求出∠CBA1的度数;
(2)由∠A1C1B=∠C1BC=90°可以得到A1C1∥BC,又A1C1=AC=BC,利用评选四边形的判定即可证明题目的问题.
(1)∵将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.
∴A1C1=10,∠CBC1=90°,
而△ABC是等腰直角三角形,
∴∠A1BC1=45°,
∴∠CBA1=135°;
(2)证明:∵∠A1C1B=∠C1BC=90°,
∴A1C1∥BC.
又∵A1C1=AC=BC,
∴四边形CBA1C1是平行四边形.
【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.
销售单价x(元) | 3.5 | 5.5 |
销售量y(袋) | 280 | 120 |
(1)请直接写出y与x之间的函数关系式;
(2)如果每天获得160元的利润,销售单价为多少元?
(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
【题目】已知二次函数y=﹣x2+bx+c,函数值y与自变量x之间的部分对应值如下表:
x | … | ﹣4 | ﹣1 | 0 | 1 | … |
y | … | ﹣2 | ﹣1 | ﹣2 | ﹣7 | … |
(1)此二次函数图象的对称轴是直线,此函数图象与x轴交点个数为 .
(2)求二次函数的函数表达式;
(3)当﹣5<x<﹣1时,请直接写出函数值y的取值范围.