题目内容
【题目】某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)当销售单价为多少元时,销售这种童装每月可获利1800元?
(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?
【答案】(1)y=﹣2x+200 (30≤x≤60);(2)当销售单价为55元时,销售这种童装每月可获利1800元;(3)当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.
【解析】
(1)当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.从而用60减去x,再除以10,就是降价几个10元,再乘以20,再把80加上就是平均月销售量;
(2)利用(售价﹣进价)乘以平均月销售量,再减去每月需要支付的其他费用,让其等于1800,解方程即可;
(3)由(2)方程式左边,可得每月获得的利润函数,写成顶点式,再结合函数的自变量取值范围,可求得取最大利润时的x值及最大利润.
解:(1)由题意得:y=80+20×
∴函数的关系式为:y=﹣2x+200 (30≤x≤60)
(2)由题意得:
(x﹣30)(﹣2x+200)﹣450=1800
解得x1=55,x2=75(不符合题意,舍去)
答:当销售单价为55元时,销售这种童装每月可获利1800元.
(3)设每月获得的利润为w元,由题意得:
w=(x﹣30)(﹣2x+200)﹣450
=﹣2(x﹣65)2+2000
∵﹣2<0
∴当x≤65时,w随x的增大而增大
∵30≤x≤60
∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950
答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.
【题目】某工厂要加工甲、乙、丙三种型号机械配件共120个,安排20个工人刚好一天加工完成,每人只加工一种配件,设加工甲种配件的人数为x,加工乙种配件的人数为y,根据下表提供的信息,解答下列问题:
配件种类 | 甲 | 乙 | 丙 |
每人每天加工配件的数量个 | 8 | 6 | 5 |
每个配件获利元 | 15 | 14 | 8 |
求y与x之间的关系.
若这些机械配件共获利1420元,请求出加工甲、乙、丙三种型号配件的人数分别是多少人?