题目内容

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, .求BE的长.

【答案】
(1)证明:连结OD,

∵OB=OD,

∴∠OBD=∠BDO,

∵∠CDA=∠CBD,

∴∠CDA=∠ODB,

又∵AB是⊙O的直径,

∴∠ADB=90°,

∴∠ADO+∠ODB=90°,

∴∠ADO+∠CDA=90°,

即∠CDO=90°,

∴OD⊥CD,

∵OD是⊙O半径,

∴CD是⊙O的切线


(2)解:∵∠C=∠C,∠CDA=∠CBD

∴△CDA∽△CBD

,BC=6,

∴CD=4,

∵CE,BE是⊙O的切线

∴BE=DE,BE⊥BC

∴BE2+BC2=EC2,即BE2+62=(4+BE)2

解得:BE=


【解析】(1) 由等边对等角及等量代换得∠CDA=∠ODB,由直径所对的圆周角是直角得∠ADO+∠ODB=90°,进而得∠ADO+∠CDA=90°,即∠CDO=90°,根据切线的判定即可得出结论;(2) 首先判断出△CDA∽△CBD,由相似三角形的性质得出CD=4,根据切线长定理得出BE=DE,BE⊥BC,最后根据勾股定理得出BE的长。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网