题目内容
【题目】如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.
【答案】30
【解析】
如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得△DEF∽△ACB,根据相似三角形的性质可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶5,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AG=AH=x,BN=BM=y,根据线段的和差表示出AC、BC、AB的长,进而根据AC∶CB∶BA=3∶4∶5列出比例式,继而求出x、y的值,进而即可求解△ABC的周长.
∵AC∶CB∶BA=3∶4∶5,
设AC=3a,CB=4a,BA=5a(a>0)
∴
∴△ABC是直角三角形,
设⊙O沿着△ABC的内部边缘滚动一圈,如图所示,
连接DE、EF、DF,
设切点分别为G、H、P、Q、M、N,
连接DH、DG、EP、EQ、FM、FN,
根据切线性质可得:
AG=AH,PC=CQ,BN=BM
DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,
∴DG∥EP,EQ∥FN,FM∥DH,
∵⊙O的半径为1
∴DG=DH=PE=QE=FN=FM=1,
则有矩形DEPG、矩形EQNF、矩形DFMH,
∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°
又∵∠CPE=∠CQE=90°, PE=QE=1
∴四边形CPEQ是正方形,
∴PC=PE=EQ=CQ=1,
∵⊙O的半径为1,且圆心O运动的路径长为18,
∴DE+EF+DF=18,
∵DE∥AC,DF∥AB,EF∥BC,
∴∠DEF=∠ACB,∠DFE=∠ABC,
∴△DEF∽△ABC,
∴DE:EF:DF=AC:BC:AB=3:4:5,
设DE=3k(k>0),则EF=4k,DF=5k,
∵DE+EF+DF=18,
∴3k+4k+5k=18,
解得k=,
∴DE=3k=,EF=4k=6,DF=5k=,
根据切线长定理,
设AG=AH=x,BN=BM=y,
则AC=AG+GP+CP=x++1=x+5.5,
BC=CQ+QN+BN=1+6+y=y+7,
AB=AH+HM+BM=x++y=x+y+7.5,
∵AC:BC:AB=3:4:5,
∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,
解得x=2,y=3,
∴AC=7.5,BC=10,AB=12.5,
∴AC+BC+AB=30.
所以△ABC的周长为30.
故答案为30.