题目内容

【题目】如图1,以ABC的边AB为直径作O,交AC边于点EBD平分ABEACF,交O于点D,且BDE=∠CBE

(1)求证:BCO的切线;

(2)延长ED交直线AB于点P,如图2,若PA=AODE=3,DF=2,求的值及AO的长.

【答案】(1)答案见解析;(2),AO=

【解析】试题分析:(1)根据圆周角定理可知∠BAE+∠EBA=90°,由∠BAE=∠BDE,∠BDE=∠CBE,所以∠EBA+∠EBC=90°.

2)易证ODDE,从而可知,易证△EDF∽△BDEDE2=DFDB,从而可求出DB的长度,由勾股定理可知AB的长度.

试题解析:解:(1)∵AB是直径,∴∠BAE+∠EBA=90°.∵∠BAE=∠BDE,∠BDE=∠CBE,∴∠EBA+∠EBC=90°,∴BC是⊙O的切线;

2)连接OD.∵BD平分∠ABE,∴∠OBD=∠EBD.∵∠ODB=∠OBD,∴∠ODB=∠DBE,∴ODBE.∵PA=AO,∴.∵∠DEF=∠DBA,∴∠DEF=∠EBD.∵∠EDF=∠EDB,∴△EDF∽△BDE,∴,∴DE2=DFDB,∴DB=,∴由勾股定理可知:AB2=AD2+BD2,∴AB=,∴AO=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网